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S U M M A R Y
Estimating the model parameters from measured data generally consists of minimizing an error
functional. A classic technique to solve a minimization problem is to successively determine the
minimum of a series of linearized problems. This formulation requires the Fréchet derivatives
(the Jacobian matrix), which can be expensive to compute. If the minimization is viewed
as a non-linear optimization problem, only the gradient of the error functional is needed.
This gradient can be computed without the Fréchet derivatives. In the 1970s, the adjoint-state
method was developed to efficiently compute the gradient. It is now a well-known method in
the numerical community for computing the gradient of a functional with respect to the model
parameters when this functional depends on those model parameters through state variables,
which are solutions of the forward problem. However, this method is less well understood in
the geophysical community. The goal of this paper is to review the adjoint-state method. The
idea is to define some adjoint-state variables that are solutions of a linear system. The adjoint-
state variables are independent of the model parameter perturbations and in a way gather the
perturbations with respect to the state variables. The adjoint-state method is efficient because
only one extra linear system needs to be solved.

Several applications are presented. When applied to the computation of the derivatives of
the ray trajectories, the link with the propagator of the perturbed ray equation is established.

Key words: adjoint state, gradient, migration, tomography.

1 I N T RO D U C T I O N

One of the important tasks in data processing consists of deter-

mining model parameters from observed data. These tasks can

be formulated as inverse problems, namely as the minimization

of a functional, for instance the least-squares misfit between syn-

thetic and observed data. In geophysics, this includes tomography,

migration/inversion and automatic velocity analysis. When a lo-

cal (descent) optimization technique, such as the conjugate gra-

dient method, is used, the gradient of the functional is required,

Gauthier et al. (1986), Liu & Bleistein (2001) and Mora (1989).

The efficiency of the method greatly depends on the accuracy and

efficiency of the computation of this gradient. With physical prob-

lems, the functional depends on so-called state variables. These

state variables are the variables computed from the state equations,

namely the equations that define the problem, sometimes called for-

ward equations. For example, in the tomography problem, the state

equations can be the ray equations, and the state variables the spatial

coordinates and the slowness vectors describing the ray trajectories.

The definition of the state variables depends on the mathematical

formulation of the physical problem. The state equations depend

on the model parameters. For the tomography problem this can be

the background velocity (or slowness). The functional depends on

those model parameters mainly through the dependency on the state

variables.

The gradient of the functional, which depends on a set of state

variables solutions of the forward equations, can be obtained with

(a set of) the Fréchet derivatives of the state variables. The Fréchet

derivatives are the derivatives of the state variables with respect

to the model parameter. For instance, for the tomography problem

described earlier, these derivatives are the derivatives of the spatial

coordinates and the slowness vectors with respect to the slowness

background. This gives the so-called Jacobian or sensitivity matrix.

The Jacobian matrix can be used to linearize the functional, and

the minimization problem can be solved by successively solving

linearized problems using linear optimization techniques. However,

the computation of the Fréchet derivatives can be expensive.

If non-linear optimization techniques, such as the non-linear con-

jugate method, are used, only the gradient of the functional may be

needed, Gill et al. (1981). In the 1970s, a method based on the ad-

joint state has been introduced in the theory of inverse problems by

Chavent (1974) to efficiently compute the gradient of a functional

without the Fréchet derivatives. This approach originated from con-

trol theory, Lions (1972). Several authors in geophysics have applied

this method, for instance, Lailly (1983), Bécache (1992), Chavent

& Jacewitz (1995), Plessix et al. (1999) and Shen et al. (2003).
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The goal of this note is to review this method that is well known in

the numerical community, to give a recipe for applying it based on

an augmented functional also called associated Lagrangian, and to

describe several examples demonstrating its practical use.

The adjoint-state method is a general method to compute the

gradient of a functional that depends on a set of state variables, which

are solutions of forward equations. The adjoint-state variables are

the solutions of an adjoint linear system and can be seen as variables

which gather a global measure of the perturbation of the problem

with respect to the state variables. Numerically this approach is

attractive because only one extra linear system needs to be solved

and often the computation of the gradient with respect to the model

parameters is equivalent to one or two evaluations of the forward

modelling. This cost is often almost independent of the number of

model parameters, which is not always the case when the Fréchet

derivatives are computed. However the adjoint-state method does

not provide the sensitivity of the solution to errors. For that, the

Fréchet derivatives are needed or a Monte Carlo type of methods

with a large number of forward computations is required.

The outline of the paper is the following. In a first section the

adjoint-state variables are introduced from the perturbation theory.

Then based on an augmented functional a recipe to systematically

define the adjoint-state equations is described. In the three next

sections, examples are given. The first one is the least-squares mi-

gration, Tarantola (1987). This is almost a school example. The

functional is the least-squares misfit between the synthetics and the

measured reflection seismic data. The adjoint states correspond to

the backpropagated field and the gradient of this least-squares mis-

fit is a migration operator, Lailly (1983) and Tarantola (1984). The

second example is the computation of the gradient of the differen-

tial semblance optimization (DSO) functional, Symes & Carazzone

(1991) and Shen et al. (2003). This example shows the power of

the adjoint-state technique. The third example is the stereotomogra-

phy, Billette & Lambaré (1998) and Lambaré et al. (2004). The link

between the adjoint-state variables and the propagator of the differ-

ential equation defining the ray trajectory perturbations, Cervený

(2001) and Farra & Madariaga (1987), is established.

2 M E T H O D

The goal of this section is to explain the adjoint-state method for

computing the gradient of a functional, J (m), when J depends on

u(m). J is defined with the functional, h, by

J (m) = h(u(m), m). (1)

The state variables, u, satisfy the state equations defined with the

mapping, F,

F(u(m), m) = 0. (2)

F is also called the forward problem or forward equation. m is the

model parameter and belongs to the model parameter space M . M
is a real space in this article. u belongs to the state variable space,

U . U is a real or complex space. A state variable, u, is a physical

realization if F(u, m) = 0. F is a mapping from U × M to U. In

order to distinguish between a physical realization and any element

of U, the elements of U are denoted by ũ . h is a functional from

U × M to R, the real space, whereas J is a functional from M to

R. Synthetic data are generally a subset of the state variables. It is

assumed that h, F, and J are at least continuously differentiable and

u(m) is uniquely defined and continuously differentiable.

A simple example is the linear case F(ũ, m) = ũ − A m and

h(ũ, m) = 1
2
||ũ − d||2, with d the observed data. This corresponds

to the simple least-squares misfit with a linear forward problem.

The physical realization is defined by u(m) = A m, with A a linear

operator, in the discrete case a rectangular matrix.

2.1 The adjoint-state method from the perturbation theory

A perturbation, δm, of the model parameter, m, induces a perturba-

tion, δu, of the physical realization, u, and a perturbation δ J of the

error functional, J . u + δu should be a physical realization with the

model parameter m + δm. Therefore, to the first order:

0 = F(u + δu, m + δm)

= F(u, m) + ∂ F(u, m)

∂ ũ
δu + ∂ F(u, m)

∂ m
δm. (3)

Since F(u, m) = 0, the first order development gives:

∂ F(u, m)

∂ ũ
δu = −∂ F(u, m)

∂ m
δm. (4)

For the linear case this gives δu = A δm.

The first order development of J gives:

δ J =
〈
∂ h(u, m)

∂ ũ
, δu

〉
U

+ ∂ h(u, m)

∂ m
δm, (5)

where 〈,〉U is the scalar product in U.

For the simple least-squares misfit, δ J = 〈u − d, δu〉U.

Assuming that for any model parameter m of M there exists a

unique solution u of U, u + δu is the unique solution of F(u + δu,

m + δm) = 0. Therefore, at the first order, δu is the unique solution

of eq. (4) and can be written with the inverse of ∂ F(u,m)

∂ ũ . This gives:

δ J = ∂ h(u, m)

∂ m
δm −〈

∂ h(u, m)

∂ ũ
,

(
∂ F(u, m)

∂ ũ

)−1
∂ F(u, m)

∂ m
δm

〉
U

δ J = ∂ h(u, m)

∂ m
δm −〈((

∂ F(u, m)

∂ ũ

)−1
)∗

∂ h(u, m)

∂ ũ
,
∂ F(u, m)

∂ m
δm

〉
U

. (6)

(∗ denotes the adjoint). For the linear example with the least-squares

misfit, this gives δ J = 〈u − d, A δm〉 since ∂ F(u,m)

∂ ũ = I in this case;

I is the identity operator.

In the second line of eq. (6), the terms that do not depend on

the perturbation δm have been gathered, the idea is to avoid the

computation of the Fréchet derivatives, ∂ u
∂ m , because this can be

expensive. Let us now define λ by(
∂ F(u, m)

∂ ũ

)∗
λ = ∂ h(u, m)

∂ ũ
. (7)

The perturbation δ J now reads:

δ J =
(

−
〈
λ,

∂ F(u, m)

∂ m

〉
U

+ ∂ h(u, m)

∂ m

)
δm. (8)

For the linear example with the least-squares misfit this simply gives

λ = u − d and δ J = 〈u − d, A δm〉U .

λ belongs to the dual space of U. It is called the adjoint-state

variable and eq. (7) is the adjoint-state equation. This is a system of

linear equations. The linear operator is the adjoint of the operator

formed by the derivatives of the state equations (the mapping F)

with respect to the state variables. The right-hand side consists of

the derivatives of the functional, h, with respect to the state variables.
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In a sense the adjoint states gather the information on the pertur-

bations of the state variables, viewed as independent variables. The

computation of ∂ J
∂ m with eqs (7) and (8) is called the adjoint-state

method.

The gradient of J can be computed either via the Fréchet deriva-

tives of u with eqs (4) and (5) or via the adjoint-state method with eqs

(7) and (8). The important differences between the two approaches

are related to eqs (4) and (7). Indeed, on one hand, eq. (7) is inde-

pendent of δm and needs to be solved only once. On the other hand,

the right-hand side of eq. (4) depends on δm and this equation needs

to be solved for each perturbation to obtain ∂ u
∂ m , namely M times

if M is the number of elements in m. The computational time of

the adjoint-state method is often almost independent of M , because

the time to compute eq. (8) is often negligible compared with the

time to solve eq. (7). This makes this approach very efficient. eq. (7)

depends on the adjoint of ∂ F
∂ ũ evaluated at (u, m), this means that u

should be completely known before solving it.

The adjoint-state equations can also be obtained with the use of

an augmented functional, also called associated Lagrangian.

2.2 A recipe with the augmented functional

Let us define the augmented functional, L, from U × U∗ × M to R
(U∗ is the dual of U) by:

L(ũ, λ̃, m) = h(ũ, m) − 〈λ̃, F(ũ, m)〉U, (9)

where λ̃ is any element of U∗ and, therefore, does not depend on m,

as ũ is any element of U.

u is a physical realization, therefore, F(u, m) = 0, and for any λ̃

L(u, λ̃, m) = h(u, m) = J (m), (10)

and since λ̃ is independent of m,

∂ L(u, λ̃, m)

∂ ũ

∂ u

∂ m
+ ∂ L(u, λ̃, m)

∂ m
= ∂ J

∂ m
. (11)

We can then choose λ in U∗ such that:

∂ L(u, λ, m)

∂ ũ
= ∂ h(u, m)

∂ ũ
−

(
∂ F(u, m)

∂ ũ

)∗
λ = 0. (12)

This equation is identical to eq. (7) and is the adjoint-state equation.

With this choice we retrieve the result of eq. (8).

∂ J

∂ m
= ∂ L(u, λ, m)

∂ m

= ∂ h(u, m)

∂ m
−

〈
λ,

∂ F(u, m)

∂ m

〉
U

. (13)

L can be also viewed as the Lagrangian associated with the min-

imization problem: find the minimum u of h(ũ, m) under the con-

straint F(u, m) = 0. The theory of optimization with equality con-

straints, Ciarlet (1989), tells us that u is the minimum, if (u, λ) is

a saddle point of L. λ are called the Lagrange multipliers. At the

saddle point the derivatives of L are equal to 0. The derivatives of

L with respect to ũ and λ̃ are:⎧⎨⎩
∂ L(ũ,λ̃,m)

∂ λ̃
= −F(ũ, m);

∂ L(ũ,λ̃,m)

∂ ũ = ∂ h(ũ,m)

∂ ũ −
(

∂ F(ũ,m)

∂ ũ

)∗
λ̃.

(14)

Therefore, ∂ L(u,λ,m)

∂ λ̃
= 0 gives the state equations and ∂ L(u,λ,m)

∂ ũ =
0 gives the adjoint-state equations. And ∂ L(u,λ,m)

∂ m = ∂ J
∂ m as seen

previously. Notice again that when deriving L with respect to m, ũ
and λ̃ are independent of m.

This link with the optimization theory is not needed to apply the

adjoint-state method. For those familiar with this theory, it helps

to recall the method. As in the optimization theory with equality

constraints where one scalar Lagrange multiplier is associated with

each scalar equation defining the constraints, one scalar adjoint state

is associated with each scalar equation defining the mapping F in

the augmented functional.

The computation of the gradient with the adjoint states can be

summarized in the following recipe when u has been found from

F(u, m) = 0:

(i) Build the augmented functional (associated Lagrangian) L.

L, a functional of independent variables ũ, λ̃, and m is defined by

L(ũ, λ̃, m) = h(ũ, m) − 〈λ̃, F(ũ, m)〉U. (15)

If F(ũ, m) is composed of N scalar equations, Fi (ũ, m), λ̃ is a vector

with N components, since at each scalar equation of F an adjoint

state is associated, and L is defined by:

L(ũ, λ̃, m) = h(ũ, m) −
N∑

i=1

〈λ̃i , Fi (ũ, m)〉. (16)

For the linear case with the least-squares misfit L(ũ, λ̃, m) = 1
2

||ũ − d||2 − 〈λ̃, ũ − A m〉U.

(ii) Define the adjoint-state equations. The adjoint-state equa-

tions are simply defined by ∂ L(u,λ,m)

∂ ũ = 0, where the derivatives are

evaluated at the point (u, λ). This gives(
∂ F(u, m)

∂ ũ

)∗
λ = ∂ h(u, m)

∂ ũ
, (17)

or

∂ h(u, m)

∂ ũ j
−

N∑
i=1

(
∂ Fi (u, m)

∂ ũ j

)∗
λi = 0. (18)

The solution of this system determines the adjoint state, λ. For the

linear case with the least-squares misfit λ = u − d.

(iii) Computation of the gradient of J . The gradient of J consists

of the derivatives of L with respect to m:

∂ J

∂ m
= ∂ h(u, m)

∂ m
−

〈
λ,

∂ F(u, m)

∂ m

〉
U

, (19)

or

∂ J

∂ m
= ∂ h(u, m)

∂ m
−

N∑
i=1

〈
λi ,

∂ Fi (u, m)

∂ m

〉
. (20)

To compute the derivative of the augmented functional, we recall

that ũ and λ̃ are independent of m.

For the linear case with the least-squares misfit ∂ J
∂ m = 〈λ, ∂ A m

∂ m 〉U =
A∗ λ.

If u has complex values, since J (m) is a real, the real part should

be taken in the right-hand side term of eqs (19) and (20).

The linear example with the least-squares misfit is a trivial exam-

ple. In the next sections more complicated examples are described.

3 L E A S T - S Q UA R E S M I G R AT I O N

In this section, we formulate the migration as an inverse problem.

The problem consists of minimizing with respect to the square of the

slowness, the least-squares misfit between the synthetics, obtained

by solving the wave equation, and the recorded (observed) reflection

seismic data. The minimization of J should give the exact slowness.

Unfortunately, in practice, J has many local minima, and a gradient

C© 2006 Shell International Exploration and Production B.V., GJI, 167, 495–503

Journal compilation C© 2006 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/167/2/495/559970 by guest on 03 M

arch 2019



498 R.-E. Plessix

optimization will only provide the best perturbation of the initial

model inside a certain basin of attraction. This basin is generally

not the basin of the global minimum, Gauthier et al. (1986). This

is the reason why this problem is called the least-squares migration

problem in this paper.

This example is a good example to understand how the adjoint-

state method can be applied. It also allows us to redemonstrate that

the gradient of J is a migration. This was discovered in the 1980s,

Lailly (1983) and Tarantola (1984).

We will develop the computation for multiple sources and mul-

tiple receivers, first in the frequency domain because it is simple,

then in the time domain.

3.1 Frequency domain

In frequency domain, the wave equation operator reads: L = − ω2

σ 2 −�, with σ the slowness. Note that the dependency on the spatial

coordinates, x, is not written. The finite-difference discretization of

Lus = fs with given boundary conditions leads to a complex linear

system Marfurt (1984):

A(ω, m)us(ω, m) = fs(ω). (21)

A is a complex matrix of size n by n, where n is the total number

of discretization points of the earth model. fs , a complex vector

of n elements, represents the source function at the source point

s. us , a complex vector of n elements, corresponds to the pressure

field due to the shot at s. The model parameter, m, is a vector of M
elements, and represents the values of the squared slowness at the

discretization points.

The least-squares functional is

J (m) = 1

2

∑
ω

∑
s,r

||Ss,r us(ω, m) − ds,r (ω)||2. (22)

ds,r are the data recorded at the receiver position r due to the source

fs. Ss,r is the restriction matrix onto the receiver r of the shot s.

The augmented functional reads, with ũ = (ũs(ω)) and λ̃ =
(λ̃s(ω)) (the dependence on x is not written, but ũs and λ̃s depend

on the space variables x):

L(ũ, λ̃, m) = Re

[
1

2

∑
ω

∑
s,r

||Ss,r ũs(ω) − ds,r (ω)||2 −

∑
ω

∑
s

〈λ̃s(ω), A(ω, m)ũs(ω) − fs(ω)〉x

]
, (23)

where 〈,〉x is the scalar product in Cn . As ũs(ω), λ̃s(ω) are complex

vectors of n elements, since the forward system, eq. (21), contains

n scalar equations.

The derivative ofLwith respect to ũs evaluated at (u, λ̃, m) gives:

∂ L(u, λ̃, m)

∂ ũs(ω)
=

∑
r

S∗
s,r (Ss,r us(ω) − ds,r (ω)) −

A∗(ω, m)λ̃s(ω).

(24)

The adjoint state is defined by ∂ L(u,λ,m)

∂ ũs
= 0:

A∗(ω, m)λs(ω) =
∑

r

S∗
s,r (Ss,r us(ω) − ds,r (ω)). (25)

There is one adjoint system per shot and per angular frequency.

The matrix A propagates the shot into the earth and us is the

incident field originating at s. The adjoint of A propagates backward

its source term, Lailly (1983). The source term, the right-hand side

of eq. (25), is the sum over the receivers of the shot s of the residual

between the synthetics and data. λs is then the backpropagation of

the residual field.

The gradient of J is:

∂ J

∂ m
= −Re

(∑
ω

∑
s

〈
λs,

∂ A

∂ m
us

〉
x

)
. (26)

The gradient of J is a vector of M elements. If we impose that m
is discretized on the same grid as us , M = n. Outside the boundary

points ∂ A
∂ m is equal to −ω2. At the discretization point x, we obtain

∂ J

∂ m
(x) = Re

(∑
ω

∑
s

ω2 λ∗
s (x, ω) us(x, ω)

)
. (27)

Up to a multiplication factor, the gradient is similar to a migrated

image and the formula is kinematically similar to the imaging

principle, Clearbout (1985). A demonstration of this result with-

out the adjoint-state method can be found in Plessix & Mulder

(2004).

3.2 Time domain

We here develop the same approach but in time domain. The ap-

plication of the adjoint-state method is slightly more complicated

because of the initial boundary conditions.

The wave operator is L = σ 2 ∂ 2

∂ t2 − �. With the initial boundary

conditions, the pressure field us due to the source fs satisfies:⎧⎪⎨⎪⎩
us(0) = 0;
∂ us (0)

∂ t = 0;

L us = fs .

(28)

us and fs depend on the time and on the spatial coordinates.

The least-squares functional reads

J (m) = 1

2

∑
s,r

∫ T

0

(Ss,r us(t) − ds,r (t))2 dt. (29)

T is the recording time. Ss,r is the restriction operator onto the

receiver position, it depends on the spatial coordinates. The model

parameter is the squared slowness, m = σ 2.

In the time domain us is real. For simplicity, we don’t mention

the spatial boundary conditions.

We associate the adjoint states μ̃0
s and μ̃1

s with the initial bound-

ary conditions, and λ̃s with the wave equation. The augmented func-

tional is defined by:

L((ũs), (λ̃s), (μ̃0
s ), (μ̃1

s ), m) =
1

2

∑
s,r

∫ T

0

(Ss,r us(t) − ds,r (t))2 dt

−
∑

s

∫ T

0

〈
λ̃s(t), m

∂ 2ũs(t)

∂ t2
− �ũs(t) − fs(t)

〉
x

dt

−
∑

s

〈
μ̃0

s , ũs(0)
〉
x
−

∑
s

〈
μ̃1

s ,
∂ ũs(0)

∂ t

〉
x

, (30)

with 〈λ̃s, ũs〉x = ∫
X λ̃s(x) ũs(x) dx the real scalar product in the

coordinate space.
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After two integrations by part:∫ T

0

〈
λ̃s, m

∂ 2ũs

∂ t2

〉
x

dt =∫ T

0

〈
m

∂ 2λ̃s

∂ t2
, ũs

〉
x

dt

+
〈
λ̃s(T ), m

∂ ũs(T )

∂ t

〉
x

−
〈
λ̃s(0), m

∂ ũs(0)

∂ t

〉
x

−
〈
m

∂ λ̃s(T )

∂ t
, ũs(T )

〉
x

+
〈
m

∂ λ̃s(0)

∂ t
, ũs(0)

〉
x

. (31)

With eqs (30) and (31) we can now compute the derivatives with

respect to ũs and evaluate them at (u, λ) to obtain the adjoint-state

equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λs(T ) = 0;
∂ λs (T )

∂ t = 0;

m ∂ 2λs
∂ t2 − �λs = ∑

r ST
s,r (Ss,r us − ds,r );

μ0
s = m ∂ λs (0)

∂ t ;

μ1
s = mλs(0).

(32)

(T denotes the transpose.)

The gradient of J at the point x is

∂ J

∂ m
(x) = −

∑
s

∫ T

0

λs(x, t)
∂ 2us(x, t)

∂ t2
dt. (33)

The adjoint states, μ0
s and μ1

s do not play a role in the gradient of J .

We can ignore them.

The system (32) has final boundary conditions. To solve it the

computation is done backwards from T to 0. To give a physical

sense to the adjoint state and to interpret the integral, eq. (33), a

new adjoint state, qs, is defined by a change of variables in the time

axis:

qs(t) = λs(T − t). (34)

The new adjoint-state system reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qs(0) = 0;
∂ qs (0)

∂ t = 0;

m ∂ 2qs (t)
∂ t2 − �q(t) =∑

r ST
s,r (Ss,r us(T − t) − ds,r (T − t)).

(35)

qs satisfies the same wave equation that us but with a different source

term. Ss,r us(T − t) − d s,r (T − t) is the residual, the difference

between the synthetics and the recorded data, in reverse time. eq. (35)

propagates the residual into the earth starting from the final time. qs

is called the backpropagated field of the residual. The gradient of J
now reads:

∂ J

∂ m
(x) = −

∑
s

∫ T

0

qs(x, T − t)
∂ 2us(x, t)

∂ t2
dt. (36)

This result has been demonstrated by Lailly (1983).

4 S H O T - B A S E D D I F F E R E N T I A L

S E M B L A N C E O P T I M I Z AT I O N

As explained in the introduction of the previous section, the least-

squares formulation is not satisfactory to retrieve the long wave-

length components of the velocity model (background) from re-

flection seismic data, because the least-squares misfit as a func-

tion of the background has many local minima. To reformulate the

problem and obtain a larger basin of attraction for the global min-

imum, an idea is to exploit the fact that in the reflection seismic

data the earth is seen through different angles of incident. If the

background velocity is correct, the pre-stack migration of the data

should give the same images, Al Yahya (1989). If the pre-stack

migration gives different earth structures, this means that the back-

ground slowness used in the migration is erroneous. Several math-

ematical formulations of this idea have been proposed in the last

20 years, among them Chavent & Jacewitz (1995), Clément et al.
(2001), Plessix et al. (2000) and Symes & Carazzone (1991). In

order to compute the gradient of the reformulated cost functions,

the authors generally use the adjoint-state formulation because it is

the most systematic method, without forgetting that they are mainly

mathematicians.

As an example, I will describe the gradient computation of the

DSO functional introduced in Symes & Carazzone (1991) for a

common shot-based approach. The principle is to migrate each shot

individually and then to differentiate the pre-stack migrated result

with respect to the shot position for fixed points in the migrated

images. If the derivative with respect to the shot position of the pre-

stack migrated data is zero, it means that the migrated images are

independent of the shot position, that is, of the angle of incident

and that the background is correct. To obtain a global formulation,

the DSO functional is used as a regularization of the least-squares

functional.

Using a finite-difference scheme in frequency-domain, eq. (21),

the incident wavefield, ui , due to the source function fi located at

the shot position i satisfies:

A(ω, m)ui (ω, m) = fi (ω). (37)

The dependency on the spatial coordinates is not explicitly written

to simplify the notation. The synthetics at the angular frequency, ω,

are Si, j ui , with Si, j the restriction operator onto the receiver, j, of

the shot, i.
To compute the migration, we introduce the backpropagated field,

vi , defined by:

A∗(ω, m)vi (ω, m) =
∑

j

di, j (ω), (38)

with di, j the measured seismic data due to the shot i recorded at the

receiver j.
The shot migrated image, ri , is then defined by:

ri = −
∑

ω

ω2v∗
i (ω)ui (ω). (39)

Here we abuse the notation and eq. (39) means ri (x) =∑
ω v∗

i (x)ui (x), where x is a discretization point.

The functional J reads

J (m) = α1

2

ns∑
i=1

∑
j

∑
ω

||Si, j ui (ω) − di, j ||2 +

α2

2

ns−1∑
i=1

‖Re(ri+1 − ri )||2. (40)

ns is the number of shots. α1 and α2 are the weights of the least-

squares functional (the first term) and the DSO functional (the sec-

ond term). The real part of ri+1 −ri is taken in the DSO functional

because ri is a complex number and only the real part corresponds

to the migrated image.

We recall that m is the squared slowness at the discretization point

and all the state variables are differentiable functions with respect
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to m. The goal is to compute the gradient of J with respect to the

squared slowness.

The forward equations, eqs (37), (38) and (39), depend on the state

variables ui , vi and ri . ui , vi , ri are discretized on the same grid,

therefore, ui , vi , ri belong to Cn , with n the number of discretization

points. To define the augmented functional, we associate, for each

shot i, λ̃u
i with eq. (37), λ̃v

i with eq. (38) and λ̃r
i with eq. (39). λ̃u

i , λ̃
v
i

and λ̃r
i belong to Cn because eqs (37) or (38) or (39) define n scalar

equations. These quantities depend on ω and x. The augmented

functional reads with the state variables, ũ = (ũi ), ṽ = (ṽi ), r̃ =
(r̃i ), and the adjoint-state variables, λ̃u = (λ̃u

i ), λ̃v = (λ̃v
i ) and λ̃r =

(λ̃v
i ):

L(ũ, ṽ, r̃, λ̃u, λ̃v, λ̃r , m) = Re

[
α1

2

ns∑
i=1

∑
ω

∑
j

||Si, j ũi (ω) − di, j (ω)||2 +

α2

2

ns−1∑
i=1

||Re(r̃i+1 − r̃i )||2 −
ns∑

i=1

∑
ω

〈
λ̃u

i (ω), A(ω, m)ũi (ω) − fi (ω)
〉
x

−

ns∑
i=1

∑
ω

〈
λ̃v

i (ω), A∗(ω, m)ṽi (ω) −
∑

j

di, j (ω)

〉
x

−

ns∑
i=1

〈
λ̃r

i , r̃i +
∑

ω

ω2ṽ∗
i (ω)ũi (ω)

〉
x

]
. (41)

The adjoint states λu , λv and λr are obtained by taking the derivatives

of L with respect to ũ, ṽ and r̃ equal to zero at the point (u, v, r, λu ,

λv , λr , m):⎧⎪⎪⎪⎨⎪⎪⎪⎩
λr

i = α2 (Re(ri − ri−1) − Re(ri+1 − ri )) ;

A(ω, m)λv
i (ω) = −ω2λr∗

i ui (ω);

A∗(ω, m)λu
i (ω) =

−ω2λr
i vi (ω) + α1

∑
j S∗

i, j (Si, j ui − di, j ). (42)

The gradient of J is obtained by

∂ J

∂ m
= ω2 Re

( ∑
i

∑
ω

〈
λu

i (ω), ui (ω)
〉
x

+ 〈
λv

i (ω), vi (ω)
〉
x

)
, (43)

since ∂ A
∂ m = ∂ A∗

∂ m = −ω2 outside the boundary points. Notice that

〈λu
i (ω), ui (ω)〉x is a vector, the scalar product in x is taken per

component i, since we should have written λu
i (ω, x) and ui (ω, x).

This application shows the numerical interest of the adjoint-state

method with the augmented functional. Indeed, a systematic use of

the method automatically produces the result. Using the perturbation

as described in the first section can lead to the same result, but its

application is a bit more difficult and cumbersome, as shown in the

Appendix. The physical interpretation of the adjoint states is difficult

to find. We can notice that λr is just the perturbation with respect to

r of the DSO functional, λu satisfies the adjoint wave equation and

λv the wave equation.

5 S T E R E O T O M O G R A P H Y

The last example describes an application based on the ray equa-

tions. The functional depends on the traveltimes and on the other

ray-based parameters. The derivatives of the traveltimes with respect

to the velocity are efficiently computed by integrating the slowness

perturbations along the ray. There is no real gain to introduce the

adjoint states when only the derivatives of the traveltimes with re-

spect to the velocity parameters are required, because the adjoint-

state method does not give a more efficient algorithm. The deriva-

tives of the ray trajectories can be evaluated from the paraxial ray

equations and the propagator associated with this linear differential

system, Cervený (2001) and Farra & Madariaga (1987). When the

functional depends on the ray trajectories, the adjoint-state method

provides a faster approach to the computation of the gradient of

the functional. This case is illustrated with the stereotomography

functional.

The purpose of the stereotomography, as described in Billette

& Lambaré (1998), is to retrieve the velocity background not only

from traveltimes picked on the seismic data but also from slopes

of the locally coherent events in the common source and common

receiver gathers. This approach differs from the classic traveltime

tomography because the picks are interpreted independently from

each other without any association to a given interface and they

can represent either reflection or refraction events. The (observed)

data are a set of source positions, xs , receiver positions, xr , two-

way traveltimes, Tm
sr , the slopes, ps , at the source locations, and the

slopes, pr , at the receiver locations.

Following Billette & Lambaré (1998), the model parameters are

xd the subsurface reflection points, θ s and θ r the take-off angles of

the rays going towards the source, xs , and towards the receiver, xr ,

Ts and Tr the traveltimes along the rays from xd towards the source

and the receiver and the parameters (vk) defining the continuous

velocity field, v. The integration parameter along the ray is the time,

t. The ray equations are:{
∂ x
∂ t = v2(x)p;
∂ p
∂ t = −p2v(x)∇v(x).

(44)

With y(t) = ( x(t)

p(t)
) and f (y, v) = ( v2(x)p

−p2v(x)∇v(x)
) the ray equations

becomes{
ya(0) = y0(xd , θa, v);
∂ ya
∂ t = f (ya, v).

(45)

ya is computed from t = 0 to t = Ta. The subscript a represents

s or r . y0 is the function defining the initial conditions. The error

functional is

Jsr = 1

2
cT (Ts + Tr − T m

sr )2 +
1

2
(yr (Tr ) − ζr )T Cr (yr (Tr ) − ζr ) +

1

2
(ys(Ts) − ζs)T Cs(ys(Ts) − ζs),

(46)

with ζr = ( xr
pr

) and ζs = ( xs
ps

). In eq. (46), cT is a scalar coefficient

and Cs and Cr are two diagonal matrices.

5.1 Gradient with the adjoint-state method

After the integration by part of the terms
∫ Ta

0
(λ̃a)T ( ∂ ỹa

∂ t −
f (ỹa, v)) dt , the augmented functional reads
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L = 1

2
cT (Ts + Tr − T m

sr )2+
1

2
(ỹr (Tr ) − ζr )T Cr (ỹr (Tr ) − ζr ) +

1

2
(ỹs(Ts) − ζs)T Cs(ỹs(Ts) − ζs) +∫ Ts

0

[ (
∂ λ̃s

∂ t

)T

ỹs + (λ̃s)T f (ỹs, v)

]
dt −

(λ̃s(Ts))T ỹs(Ts) + (λ̃s(0))T ỹs(0)+∫ Tr

0

[ (
∂ λ̃r

∂ t

)T

ỹr + (λ̃r )T f (ỹr , v)

]
dt −(

λ̃r (Tr )
)T

ỹr (Tr ) + (λ̃r (0))T ỹr (0)−(
λ̃0

s

)T
(ỹs(0) − y0(xd , θs, v))−(

λ̃0
r

)T
(ỹr (0) − y0(xd , θr , v)). (47)

L is a functional of the state variables, ỹa , the adjoint-state vari-

ables, λ̃a , and the model parameters, Ts, Tr, θ s , θ r , xd and (vk). The

derivatives with respect to the state variables, ỹa , give the adjoint-

state equations:⎧⎪⎨⎪⎩
λa(Ta) = Ca(ya(Ta) − ζa);
∂ λa (t)

∂ t = −AT
a (t)λa(t);

λ0
a = λa(0),

(48)

with Aa(t) = ∂ f (ya (t),v)

∂ ỹ .

The derivatives of the augmented functional with respect to the

model parameters correspond to the derivatives of Jsr with respect

to the model parameters. This yields

∂ Jsr

∂ vk
=

∫ Ts

0

(λs(t))T ∂ f (ys(t), v)

∂ vk
dt +

(
λ0

s

)T ∂ y0(xd , θs, v)

∂ vk
+∫ Tr

0

(λr (t))T ∂ f (yr (t), v)

∂ vk
dt +

(
λ0

r

)T ∂ y0(xd , θr , v)

∂ vk
;

∂ Jsr

∂ xd
= (

λ0
s

)T ∂ y0(xd , θs, v)

∂ xd
+

(
λ0

r

)T ∂ y0(xd , θr , v)

∂ xd
;

∂ Jsr

∂ θa
= (

λ0
a

)T ∂ y0(xd , θa, v)

∂ θa
;

∂ Jsr

∂ Ta
= cT (Tr + Ts − Tsr ) +

(ya(Ta) − ζa)T Ca f (ya(Ta), v). (49)

For the computation of the derivatives with respect to Ta, we have

used the fact that the ray equations are satisfied at Ta.

5.2 Gradient with the Fréchet derivatives

A more traditional approach to compute the gradient is to first deter-

mine the Fréchet derivatives. In this case, this means the derivatives

of Ts, Tr, ys(Ts), and yr (Tr) with respect to Ts, Tr, xd , θ s , θ r , and (vk).

A usual approach to compute those derivatives is to use the paraxial

ray equations Cervený (2001) and Farra & Madariaga (1987). The

perturbation δya of the rays ya is obtained from the propagator Pa

defined by{
Pa(t0, t0) = I;
d Pa (t,t0)

d t = Aa(t)Pa(t, t0).
(50)

This gives, Billette & Lambaré (1998)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δya(0) = ∂ y0(xd ,θa ,v)

∂ xd
δxd+

∂ y0(xd ,θa ,v)

∂ θa
δθa+

∂ y0(xd ,θa ,v)

∂ vk
δvk ;

δya(t) = Pa(t, 0)δya(0)+∫ t
0

Pa(t, t ′) ∂ f (ya (t ′),v)

∂ vk
δvkdt ′+

f (ya(t), v)δt,

(51)

and the Fréchet derivatives are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ya (Ta )

∂ Ta
= f (ya(Ta), v);

∂ ya (Ta )

∂ θa
= Pa(Ta, 0) ∂ y0(xd ,θa ,v)

∂ θa
;

∂ ya (Ta )

∂ xd
= Pa(Ta, 0) ∂ y0(xd ,θa ,v)

∂ xd
;

∂ ya (Ta )

∂ vk
= Pa(Ta, 0) ∂ y0(xd ,θa ,v)

∂ vk
+∫ Ta

0
Pa(Ta, t ′) ∂ f (ya (t ′),v)

∂ vk
dt ′;

∂ Ts
∂ Ts

= 1;

∂ Tr
∂ Tr

= 1.

(52)

The other Fréchet derivatives are equal to 0.

The derivatives of Jsr are then simply

∂ Jsr

∂ ν
= (ys(Ts) − ζs)T Cs

∂ ys(Ts)

∂ ν
+

(yr (Tr ) − ζr )T Cr
∂ yr (Tr )

∂ ν
, (53)

with ν equals to vk , xd , θ s , or θ r and

∂ Jsr

∂ Ta
= cT (Ts + Tr − Tsr )+

(ya(Ta) − ζa)T Ca
∂ ya(Ta)

∂ Ta
. (54)

5.3 Relation between adjoint states and propagator

From eqs (49), (52) and (53), we deduce that

λT
a (t) = (ya(Ta) − ζa)T CaPa(Ta, t) . (55)

In fact, the propagator PT
a satisfies{

d PT
a (t,t ′)
d t ′ = −AT

a (t ′)PT
a (t, t ′);

PT
a (t, t) = I.

(56)

PT
a is the propagator of the adjoint-state differential equation with a

final condition, eq. (48). The adjoint state, λa , is then equal to (Ca

is a diagonal matrix):

λa(t) = PT
a (Ta, t)λa(Ta) = PT

a (Ta, t)Ca(ya(Ta) − ζa). (57)

The main difference between the two approaches lies in the adjoint-

state system (eq. 48) and the propagator system (eq. 50). Whereas

the first one is a vectorial system, the second is a matrix system. This

means that the adjoint-state system is d times smaller than the propa-

gator system, with d = 4 in 2-D problems and d = 6 in 3-D problems.

The adjoint-state method is then roughly d times faster. However,

the adjoint-state method does not provide the Jacobian matrix, but
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only the gradient of J and the Jacobian may be used to determine the

sensitivity of the solution to errors. The minimization should rely

on non-linear optimization techniques, such as non-linear conjugate

or quasi-Newton methods, Gill et al. (1981). In Billette & Lambaré

(1998), the authors solve the non-linear optimization problem, by

successively solving the linear problems defined by the Jacobian

matrices.

6 C O N C L U S I O N

The adjoint-state method for the gradient computation of a func-

tional has been reviewed. The technique applies when the functional

depends on the model parameters through a set of state variables,

solutions of forward equations. The method consists of the com-

putation of one unique extra linear system. The linear operator is

formed with the adjoint of the operator defined by the derivatives of

the forward model with respect to the state variables and the second

member consists of the derivatives of the functional with respect

to the state variables. The adjoint-state variables are the solution of

this linear system. In a sense, they gather the information of the

perturbations with respect to the state variables, assuming that the

state variables are independent variables. Since this linear system

is independent of the derivatives with respect to the model parame-

ters, the adjoint states have to be computed only once, making the

method numerically very efficient. The gradient of the functional

with respect to the model parameters is now simply the scalar prod-

uct between the adjoint states and the derivatives of the forward

model with respect to the model parameters.

To form this extra linear system (the adjoint-state system) a recipe

based on an augmented functional has been reviewed. This provides

a systematic approach. The main step in the definition of this aug-

mented functional is to consider the state variables and the adjoint-

state variables as independent variables.

Several examples have been described to show the power of this

approach. For the complicated example with the DSO functional, the

adjoint-state equations have been derived from perturbation theory.

This shows that the use of the augmented functional is not strictly

necessary but simplifies the approach.

When the forward equations are the ray equations, the transpose

of the propagator of the perturbed ray equations is the propagator

of the adjoint equations. The adjoint-state method is computation-

ally more efficient because the adjoint-state system is a vectorial

system whereas the system of the propagator is a matrix system.

Nevertheless, the adjoint-state method only gives the gradient, and

not the Fréchet derivatives. The optimization problem should be

solved with a non-linear optimization method, such a quasi-Newton

or non-linear conjugate gradient technique.
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A P P E N D I X : D S O G R A D I E N T W I T H

P E RT U R B AT I O N A P P ROA C H

In this appendix, we retrieve the gradient of the DSO function di-

rectly from the perturbation approach without the help of the aug-

mented functional. If the model, m, is perturbed by δm, the wave-

fields, ui , are perturbed by δui , the backpropagated wavefields, vi ,
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are perturbed by δvi , the migrated images, ri , are perturbed by δri ,

and the functional J by δ J . From eq. (40) we obtain

δ J = Re

[

α1

ns∑
i=1

∑
j

∑
ω

〈
Si j ui (ω) − di j (ω), Si jδui (ω)

〉 +
α2

ns−1∑
i=1

〈Re(ri+1 − ri ), δri+1 − δri 〉x

]
. (A1)

(ns is the number of shots, i is the shot index and 〈,〉 is the scalar prod-

uct in the data space, 〈,〉x is the scalar product in spatial coordinate

space.)

The perturbations of the state variable equations, eqs (37), (38)

and (39), gives⎧⎪⎨⎪⎩
∂ A
∂ m ui δm + A δui = 0;
∂ A∗
∂ m vi δm + A∗ δvi = 0;

δri = −∑
ω ω2(v∗

i δui + δv∗
i ui ).

(A2)

The dependency on the spatial coordinates and the angular frequency

are not written.

The complicated part consists in defining the adjoint-state equa-

tions. However with some experience, this is possible. For this ex-

ample, we first rewrite the second term of eq. (A1)

α2

ns−1∑
i=1

〈Re(ri+1 − ri ), δri+1 − δri 〉x =
ns∑

i=1

α2 〈Re(ri − ri−1) − Re(ri+1 − ri ), δri 〉x , (A3)

with r0 = r1 and rns+1 = rns . And we define

λr
i = α2(Re(ri − ri−1) − Re(ri+1 − ri )). (A4)

Replacing δri by its value gives:

δ J = Re

[
α1

∑
i

∑
ω

∑
j

〈Si j ui − di j , Si jδui 〉+

∑
i

∑
ω

ω2
〈
λr

i , −(v∗
i δui + δv∗

i ui )
〉
x

]
. (A5)

We then gather the terms depending on δui and the terms depending

on δvi :

δ J = Re

[
∑

i

∑
ω

〈
−ω2viλ

r
i + α1

∑
j

ei j , δui

〉
x

+

∑
i

∑
ω

ω2
〈−uiλ

r∗
i , δvi

〉
x

]
(A6)

with Re(〈 − λr
i u∗

i , δv∗
i 〉x) = Re(〈 −uiλ

r∗
i , δvi 〉x) and ei j =S∗

i j (Si j

ui −di j ).

By replacing δvi by its values in the second term of eq. (A6) we

obtain

ω2
〈−λr∗

i ui , δvi

〉
x

=

ω2

〈
λr∗

i ui , (A∗)−1 ∂ A∗

∂ m
vi

〉
x

δm =

ω2

〈
A−1λr∗

i ui ,
∂ A∗

∂ m
vi

〉
x

δm. (A7)

By replacing δui by its value in the first term of eq. (A6) we obtain〈
−ω2viλ

r
i + α1

∑
j

ei j , δui )

〉
x

=

−
〈
−ω2λr

i vi + α1

∑
j

ei j , A−1 ∂ A

∂ m
ui

〉
x

=

−
〈

(A∗)−1

(
−ω2λr

i vi + α1

∑
j

ei j

)
,
∂ A

∂ m
ui

〉
x

.
(A8)

We can now define{
Aλv

i = −ω2λr∗
i ui ;

A∗λu
i = −ω2λr

i vi + α1

∑
j ei j .

(A9)

The equations eqs (A4) and (A9) are the adjoint-state equations.

They are the same that the ones obtained with the use of the aug-

mented functional in the section on the DSO function, however the

derivation is less obvious and systematic in this appendix.

The perturbation δ J now reads:

δ J = −Re

( ∑
i

∑
ω

〈
λu

i ,
∂ A

∂ m
ui

〉
x

+
〈
λv

i ,
∂ A∗

∂ m
vi

〉
x

)
δm. (A10)

And with ∂ A∗
∂ m = ∂ A

∂ m = −ω2, we obtain:

δ J = ω2 Re

( ∑
i

∑
ω

〈
λu

i (ω), ui (ω)
〉
x
+ 〈

λv
i (ω), vi (ω)

〉
x

)
δm. (A11)
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